Copied to
clipboard

G = C424C4⋊C3order 192 = 26·3

The semidirect product of C424C4 and C3 acting faithfully

non-abelian, soluble

Aliases: C424C4⋊C3, C4.1(C42⋊C3), (C22×C4).8A4, C23.10(C2×A4), C22.1(C4.A4), C2.C42.3C6, C23.3A4.3C2, C2.3(C2×C42⋊C3), SmallGroup(192,190)

Series: Derived Chief Lower central Upper central

C1C2C2.C42 — C424C4⋊C3
C1C2C23C2.C42C23.3A4 — C424C4⋊C3
C2.C42 — C424C4⋊C3
C1C4

Generators and relations for C424C4⋊C3
 G = < a,b,c,d | a4=b4=c4=d3=1, ab=ba, cac-1=ab2, dad-1=a2c-1, bc=cb, dbd-1=a2b-1, dcd-1=a-1b2c >

3C2
3C2
16C3
3C22
3C22
3C4
6C4
6C4
6C4
6C4
16C6
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
6C2×C4
6C2×C4
6C2×C4
6C2×C4
4A4
16C12
3C42
3C42
3C42
3C22×C4
3C42
3C22×C4
4C2×A4
3C2×C42
3C2.C42
4C4×A4

Character table of C424C4⋊C3

 class 12A2B2C3A3B4A4B4C4D4E4F4G4H4I4J4K4L6A6B12A12B12C12D
 size 11331616113366666666161616161616
ρ1111111111111111111111111    trivial
ρ2111111-1-1-1-11111-1-1-1-111-1-1-1-1    linear of order 2
ρ31111ζ32ζ3111111111111ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ41111ζ32ζ3-1-1-1-11111-1-1-1-1ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ51111ζ3ζ32111111111111ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ61111ζ3ζ32-1-1-1-11111-1-1-1-1ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ72-22-2-1-1-2i2i-2i2i0000000011-i-iii    complex lifted from C4.A4
ρ82-22-2-1-12i-2i2i-2i0000000011ii-i-i    complex lifted from C4.A4
ρ92-22-2ζ65ζ62i-2i2i-2i00000000ζ3ζ32ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    complex lifted from C4.A4
ρ102-22-2ζ6ζ65-2i2i-2i2i00000000ζ32ζ3ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    complex lifted from C4.A4
ρ112-22-2ζ6ζ652i-2i2i-2i00000000ζ32ζ3ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    complex lifted from C4.A4
ρ122-22-2ζ65ζ6-2i2i-2i2i00000000ζ3ζ32ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    complex lifted from C4.A4
ρ133333003333-1-1-1-1-1-1-1-1000000    orthogonal lifted from A4
ρ14333300-3-3-3-3-1-1-1-11111000000    orthogonal lifted from C2×A4
ρ1533-1-10033-1-1-1-2i-1+2i11-1-2i11-1+2i000000    complex lifted from C42⋊C3
ρ1633-1-100-3-31111-1+2i-1-2i-11-2i1+2i-1000000    complex lifted from C2×C42⋊C3
ρ1733-1-10033-1-111-1+2i-1-2i1-1+2i-1-2i1000000    complex lifted from C42⋊C3
ρ1833-1-100-3-31111-1-2i-1+2i-11+2i1-2i-1000000    complex lifted from C2×C42⋊C3
ρ1933-1-10033-1-1-1+2i-1-2i11-1+2i11-1-2i000000    complex lifted from C42⋊C3
ρ2033-1-10033-1-111-1-2i-1+2i1-1-2i-1+2i1000000    complex lifted from C42⋊C3
ρ2133-1-100-3-311-1+2i-1-2i111-2i-1-11+2i000000    complex lifted from C2×C42⋊C3
ρ2233-1-100-3-311-1-2i-1+2i111+2i-1-11-2i000000    complex lifted from C2×C42⋊C3
ρ236-6-22006i-6i-2i2i00000000000000    complex faithful
ρ246-6-2200-6i6i2i-2i00000000000000    complex faithful

Permutation representations of C424C4⋊C3
On 24 points - transitive group 24T301
Generators in S24
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 4 9 6)(2 3 10 5)(7 12 14 16)(8 11 13 15)(17 18 19 20)(21 24 23 22)
(1 3)(2 6)(4 10)(5 9)(7 16 14 12)(8 11 13 15)(17 24)(18 23)(19 22)(20 21)
(1 7 22)(2 11 17)(3 8 18)(4 16 21)(5 13 20)(6 12 23)(9 14 24)(10 15 19)

G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,4,9,6)(2,3,10,5)(7,12,14,16)(8,11,13,15)(17,18,19,20)(21,24,23,22), (1,3)(2,6)(4,10)(5,9)(7,16,14,12)(8,11,13,15)(17,24)(18,23)(19,22)(20,21), (1,7,22)(2,11,17)(3,8,18)(4,16,21)(5,13,20)(6,12,23)(9,14,24)(10,15,19)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,4,9,6)(2,3,10,5)(7,12,14,16)(8,11,13,15)(17,18,19,20)(21,24,23,22), (1,3)(2,6)(4,10)(5,9)(7,16,14,12)(8,11,13,15)(17,24)(18,23)(19,22)(20,21), (1,7,22)(2,11,17)(3,8,18)(4,16,21)(5,13,20)(6,12,23)(9,14,24)(10,15,19) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,4,9,6),(2,3,10,5),(7,12,14,16),(8,11,13,15),(17,18,19,20),(21,24,23,22)], [(1,3),(2,6),(4,10),(5,9),(7,16,14,12),(8,11,13,15),(17,24),(18,23),(19,22),(20,21)], [(1,7,22),(2,11,17),(3,8,18),(4,16,21),(5,13,20),(6,12,23),(9,14,24),(10,15,19)]])

G:=TransitiveGroup(24,301);

On 24 points - transitive group 24T309
Generators in S24
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 3 4 2)(5 12 6 11)(7 15 13 10)(8 16 14 9)(17 22 19 24)(18 23 20 21)
(1 5)(2 11)(3 12)(4 6)(7 8 13 14)(9 15 16 10)(17 19)(22 24)
(1 14 22)(2 9 17)(3 16 19)(4 8 24)(5 13 23)(6 7 21)(10 18 11)(12 15 20)

G:=sub<Sym(24)| (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,3,4,2)(5,12,6,11)(7,15,13,10)(8,16,14,9)(17,22,19,24)(18,23,20,21), (1,5)(2,11)(3,12)(4,6)(7,8,13,14)(9,15,16,10)(17,19)(22,24), (1,14,22)(2,9,17)(3,16,19)(4,8,24)(5,13,23)(6,7,21)(10,18,11)(12,15,20)>;

G:=Group( (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,3,4,2)(5,12,6,11)(7,15,13,10)(8,16,14,9)(17,22,19,24)(18,23,20,21), (1,5)(2,11)(3,12)(4,6)(7,8,13,14)(9,15,16,10)(17,19)(22,24), (1,14,22)(2,9,17)(3,16,19)(4,8,24)(5,13,23)(6,7,21)(10,18,11)(12,15,20) );

G=PermutationGroup([[(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,3,4,2),(5,12,6,11),(7,15,13,10),(8,16,14,9),(17,22,19,24),(18,23,20,21)], [(1,5),(2,11),(3,12),(4,6),(7,8,13,14),(9,15,16,10),(17,19),(22,24)], [(1,14,22),(2,9,17),(3,16,19),(4,8,24),(5,13,23),(6,7,21),(10,18,11),(12,15,20)]])

G:=TransitiveGroup(24,309);

Matrix representation of C424C4⋊C3 in GL5(𝔽13)

93000
34000
00500
00080
00001
,
50000
05000
00100
000120
00001
,
109000
93000
00800
000120
00008
,
10000
93000
00003
00300
00030

G:=sub<GL(5,GF(13))| [9,3,0,0,0,3,4,0,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,1],[5,0,0,0,0,0,5,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1],[10,9,0,0,0,9,3,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,8],[1,9,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,0,0,3,0,0] >;

C424C4⋊C3 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4C_4\rtimes C_3
% in TeX

G:=Group("C4^2:4C4:C3");
// GroupNames label

G:=SmallGroup(192,190);
// by ID

G=gap.SmallGroup(192,190);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,268,934,521,80,2531,3540]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^3=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^2*c^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^-1*b^2*c>;
// generators/relations

Export

Subgroup lattice of C424C4⋊C3 in TeX
Character table of C424C4⋊C3 in TeX

׿
×
𝔽